Categories
World

Predicting Traffic Crashes Before They Happen With Artificial Intelligence

A deep model was trained on historical crash data, road maps, satellite imagery, and GPS to enable high-resolution crash maps that could lead to safer roads.

Today’s world is one big maze, connected by layers of concrete and asphalt that afford us the luxury of navigation by vehicle. For many of our road-related advancements — GPS lets us fire fewer neurons thanks to map apps, cameras alert us to potentially costly scrapes and scratches, and electric autonomous cars have lower fuel costs — our safety measures haven’t quite caught up. We still rely on a steady diet of traffic signals, trust, and the steel surrounding us to safely get from point A to point B.

To get ahead of the uncertainty inherent to crashes, scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Qatar Center for Artificial Intelligence developed a deep learning model that predicts very high-resolution crash risk maps. Fed on a combination of historical crash data, road maps, satellite imagery, and GPS traces, the risk maps describe the expected number of crashes over a period of time in the future, to identify high-risk areas and predict future crashes.

Predicting Traffic Accidents Before They Happen

A dataset that was used to create crash-risk maps covered 7,500 square kilometers from Los Angeles, New York City, Chicago and Boston. Among the four cities, L.A. was the most unsafe, since it had the highest crash density, followed by New York City, Chicago, and Boston. Credit: Image courtesy of MIT CSAIL.

Typically, these types of risk maps are captured at much lower resolutions that hover around hundreds of meters, which means glossing over crucial details since the roads become blurred together. These maps, though, are 5×5 meter grid cells, and the higher resolution brings newfound clarity: The scientists found that a highway road, for example, has a higher risk than nearby residential roads, and ramps merging and exiting the highway have an even higher risk than other roads.

“By capturing the underlying risk distribution that determines the probability of future crashes at all places, and without any historical data, we can find safer routes, enable auto insurance companies to provide customized insurance plans based on driving trajectories of customers, help city planners design safer roads, and even predict future crashes,” says MIT CSAIL PhD student Songtao He, a lead author on a new paper about the research.

Even though car crashes are sparse, they cost about 3 percent of the world’s GDP and are the leading cause of death in children and young adults. This sparsity makes inferring maps at such a high resolution a tricky task. Crashes at this level are thinly scattered — the average annual odds of a crash in a 5×5 grid cell is about one-in-1,000 — and they rarely happen at the same location twice. Previous attempts to predict crash risk have been largely “historical,” as an area would only be considered high-risk if there was a previous nearby crash.

Predicting Traffic Crashes Before They Happen

To evaluate the model, the scientists used crashes and data from 2017 and 2018, and tested its performance at predicting crashes in 2019 and 2020. Many locations were identified as high-risk, even though they had no recorded crashes, and also experienced crashes during the follow-up years. Credit: Image courtesy of MIT CSAIL.

The team’s approach casts a wider net to capture critical data. It identifies high-risk locations using GPS trajectory patterns, which give information about density, speed, and direction of traffic, and satellite imagery that describes road structures, such as the number of lanes, whether there’s a shoulder, or if there’s a large number of pedestrians. Then, even if a high-risk area has no recorded crashes, it can still be identified as high-risk, based on its traffic patterns and topology alone.

To evaluate the model, the scientists used crashes and data from 2017 and 2018, and tested its performance at predicting crashes in 2019 and 2020. Many locations were identified as high-risk, even though they had no recorded crashes, and also experienced crashes during the follow-up years.

“Our model can generalize from one city to another by combining multiple clues from seemingly unrelated data sources. This is a step toward general AI, because our model can predict crash maps in uncharted territories,” says Amin Sadeghi, a lead scientist at Qatar Computing Research Institute (QCRI) and an author on the paper. “The model can be used to infer a useful crash map even in the absence of historical crash data, which could translate to positive use for city planning and policymaking by comparing imaginary scenarios.”

The dataset covered 7,500 square kilometers from Los Angeles, New York City, Chicago, and Boston. Among the four cities, L.A. was the most unsafe, since it had the highest crash density, followed by New York City, Chicago, and Boston.

“If people can use the risk map to identify potentially high-risk road segments, they can take action in advance to reduce the risk of trips they take. Apps like Waze and Apple Maps have incident feature tools, but we’re trying to get ahead of the crashes — before they happen,” says He.

Reference: “Inferring high-resolution traffic accident risk maps based on satellite imagery and GPS trajectories” by Songtao He, Mohammad Amin Sadeghi, Sanjay Chawla, Mohammad Alizadeh, Hari Balakrishnan and Samuel Madden, ICCV.
PDF

He and Sadeghi wrote the paper alongside Sanjay Chawla, research director at QCRI, and MIT professors of electrical engineering and computer science Mohammad Alizadeh, ??Hari Balakrishnan, and Sam Madden. They will present the paper at the 2021 International Conference on Computer Vision.

https://www.deviantart.com/billukha/journal/CFB-College-football-Week-7-Live-stream-reddit-895043537

https://console.mytrendingstories.com/article/single/college-football-live-stream-reddit-weeeng

https://pastebin.com/yunXjTLk

https://kukooo.com/jobs/sales/ncaaf-live-stream-college-football-live-stream-free-reddit_i102434

https://vocus.cc/article/616ace42fd897800011c7603

https://blog.goo.ne.jp/sadsfd/e/4a8610c1d41c7ad978a6b6eb30b0b2c7

https://pasteio.com/xDv6xO6hirNc

https://paiza.io/projects/b0c5TEwo-jiGjSbmoTbK7Q?language=php

https://www.bankier.pl/forum/temat_ncaaf-live-stream-college-football-live-stream-free-reddit,50287179.html

https://ideone.com/TXp0Pv

https://www.deviantart.com/billukha/journal/Livestreams-UCF-vs-Cincinnati-Live-Stream-reddit-895041867

https://www.deviantart.com/billukha/journal/W-7-UCF-vs-Cincinnati-LiveStream-reddit-free-895041914

https://www.deviantart.com/billukha/journal/h2h-UCF-vs-Cincinnati-FREE-LiveStream-reddit-895041969

https://www.deviantart.com/billukha/journal/Live-Michigan-State-vs-Indiana-Live-Stream-reddit-895042061

https://www.deviantart.com/billukha/journal/W-7-Michigan-State-vs-Indiana-LiveStream-reddit-895042107

https://www.deviantart.com/billukha/journal/h2h-Michigan-State-vs-Indiana-FREE-LiveStream-895042162

https://www.deviantart.com/billukha/journal/Livestreams-Oklahoma-State-vs-Texas-Live-REDDIT-895042210

https://www.deviantart.com/billukha/journal/W-7-Oklahoma-State-vS-Texas-LiveStream-reddit-free-895042240

https://www.deviantart.com/billukha/journal/h2h-Oklahoma-State-vs-Texas-LiveStream-reddiT-895042274

https://www.deviantart.com/billukha/journal/LivE-Auburn-vs-Arkansas-Live-Stream-reddit-16-10-895042314

https://www.deviantart.com/billukha/journal/W-7-Auburn-vs-Arkansas-LiveStream-reddit-free-895042356

https://www.deviantart.com/billukha/journal/h2h-Auburn-vs-Arkansas-FREE-Live-Stream-reddit-895042391

https://www.deviantart.com/billukha/journal/Livestreams-Florida-vs-LSU-Live-reddit-16-10-895042447

https://www.deviantart.com/billukha/journal/W-7-Florida-vs-LSU-LiveStream-reddit-free-10-16-895042493

https://www.deviantart.com/billukha/journal/h2h-Florida-vs-LSU-FREE-Live-Stream-reddit-895042548

https://www.deviantart.com/billukha/journal/LiveReddit-Texas-AM-vs-Missouri-Live-Stream-895042603

https://www.deviantart.com/billukha/journal/W-7-Texas-AampM-vs-Missouri-LiveStream-reddit-fr-895042642

https://www.deviantart.com/billukha/journal/h2h-Texas-AM-vs-Missouri-FREE-Live-Stream-reddit-895042691

https://www.deviantart.com/billukha/journal/Livestreams-Nebraska-vs-Minnesota-Live-Reddit-Fr-895042733

https://www.deviantart.com/billukha/journal/Week7-Nebraska-vs-Minnesota-LiveStream-reddit-free-895042758

https://www.deviantart.com/billukha/journal/h2h-Nebraska-vs-Minnesota-FREE-LiveStream-reddit-895042783

https://www.deviantart.com/billukha/journal/Livestreams-Rutgers-vs-Northwestern-Live-REDDIT-895042810

https://www.deviantart.com/billukha/journal/W-7-Rutgers-vs-Northwestern-LiveStream-reddit-free-895042828

https://www.deviantart.com/billukha/journal/h2h-Rutgers-vs-Northwestern-FREE-Live-Stream-redd-895042856

https://www.deviantart.com/billukha/journal/streams-Yale-vs-UConn-Live-Stream-reddit-16-Oct-895043011

https://www.deviantart.com/billukha/journal/W-7-Yale-vs-UConn-LiveStream-reddit-free-895043057

https://www.deviantart.com/billukha/journal/h2h-Yale-vs-UConn-FREE-Live-Stream-reddit-895043090

https://www.deviantart.com/billukha/journal/Livestreams-Tulsa-vs-South-Florida-Live-Reddit-895043135

https://www.deviantart.com/billukha/journal/W-7-Tulsa-vs-South-Florida-LiveStream-reddit-free-895043162

https://www.deviantart.com/billukha/journal/h2h-Tulsa-vs-South-Florida-FREE-LiveStream-reddiT-895043199

https://www.deviantart.com/billukha/journal/Livestreams-Ohio-vs-Buffalo-Live-Stream-reddit-16-895043233

https://www.deviantart.com/billukha/journal/Week-7-Ohio-vs-Buffalo-LiveStream-reddit-free-895043272

https://www.deviantart.com/billukha/journal/h2h-Ohio-vs-Buffalo-FREE-LiveStream-reddit-895043317

https://www.deviantart.com/billukha/journal/Livestreams-Duke-vs-Virginia-Live-Stream-reddit-895043368

https://www.deviantart.com/billukha/journal/CFBStreams-Duke-vs-Virginia-LiveStream-reddit-free-895043404

https://www.deviantart.com/billukha/journal/h2h-Duke-vs-Virginia-FREE-LiveStream-reddit-895043433

Leave a Reply

Your email address will not be published. Required fields are marked *