Lucy Is Going to Space – To Explore Time Capsules From the Birth of Our Solar System

Time capsules from the birth of our Solar System more than 4 billion years ago, the swarms of Trojan asteroids associated with Jupiter are thought to be remnants of the primordial material that formed the outer planets. The Trojans orbit the Sun in two loose groups, with one group leading ahead of Jupiter in its path, the other trailing behind. Clustered around the two Lagrange points equidistant from the Sun and Jupiter, the Trojans are stabilized by the Sun and its largest planet in a gravitational balancing act. These primitive bodies hold vital clues to deciphering the history of the solar system, and perhaps even the origins of organic material on Earth.

NASA’s Lucy will be the first space mission to study the Trojans. The mission takes its name from the fossilized human ancestor (called “Lucy” by her discoverers) whose skeleton provided unique insight into humanity’s evolution. Likewise, the Lucy mission will revolutionize our knowledge of planetary origins and the formation of the solar system.

Lucy's Orbital Path

This diagram illustrates Lucy’s orbital path. Credit: Southwest Research Institute

Lucy is slated to launch in October 2021 and, with boosts from Earth’s gravity, will complete a 12-year journey to eight different asteroids — a Main Belt asteroid and seven Trojans, four of which are members of “two-for-the-price-of-one” binary systems. Lucy’s complex path will take it to both clusters of Trojans and give us our first close-up view of all three major types of bodies in the swarms (so-called C-, P- and D-types).

This diagram illustrates Lucy’s orbital path. The spacecraft’s path (green) is shown in a frame of reference where Jupiter remains stationary, giving the trajectory its pretzel-like shape. After launch in October 2021, Lucy has two close Earth flybys before encountering its Trojan targets. In the L4 cloud Lucy will fly by (3548) Eurybates (white) and its satellite, (15094) Polymele (pink), (11351) Leucus (red), and (21900) Orus (red) from 2027-2028. After diving past Earth again Lucy will visit the L5 cloud and encounter the (617) Patroclus-Menoetius binary (pink) in 2033. As a bonus, in 2025 on the way to the L4, Lucy flies by a small Main Belt asteroid, (52246) Donaldjohanson (white), named for the discoverer of the Lucy fossil. After flying by the Patroclus-Menoetius binary in 2033, Lucy will continue cycling between the two Trojan clouds every six years.,49784793.html,49784799.html


Physicists Probe Light Smashups To Guide Future Research Beyond the Standard Model

Hot on the heels of proving an 87-year-old prediction that matter can be generated directly from light, Rice University physicists and their colleagues have detailed how that process may impact future studies of primordial plasma and physics beyond the Standard Model.

“We are essentially looking at collisions of light,” said Wei Li, an associate professor of physics and astronomy at Rice and co-author of the study published in Physical Review Letters.

“We know from Einstein that energy can be converted into mass,” said Li, a particle physicist who collaborates with hundreds of colleagues on experiments at high-energy particle accelerators like the European Organization for Nuclear Research’s Large Hadron Collider (LHC) and Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC).

Accelerators like RHIC and LHC routinely turn energy into matter by accelerating pieces of atoms near the speed of light and smashing them into one another. The 2012 discovery of the Higgs particle at the LHC is a notable example. At the time, the Higgs was the final unobserved particle in the Standard Model, a theory that describes the fundamental forces and building blocks of atoms.

Wei Li and Shuai Yang

Rice physics professor Wei Li (left) and postdoctoral research associate Shuai Yang teamed with colleagues at the Large Hadron Collider’s (LHC) Compact Muon Solenoid experiment to study matter-generating collisions of light that occurred in heavy ion experiments at LHC. Yang lead-authored a newly published study that detailed how the departure angle of debris from the smashups is subtly distorted by quantum interference patterns prior to impact. Credit: Photo by Jeff Fitlow

Impressive as it is, physicists know the Standard Model explains only about 4% of the matter and energy in the universe. Li said this week’s study, which was lead-authored by Rice postdoctoral researcher Shuai Yang, has implications for the search for physics beyond the Standard Model.

“There are papers predicting that you can create new particles from these ion collisions, that we have such a high density of photons in these collisions that these photon-photon interactions can create new physics beyond in the Standard Model,” Li said.

Yang said, “To look for new physics, one must understand Standard Model processes very precisely. The effect that we’ve seen here has not been previously considered when people have suggested using photon-photon interactions to look for new physics. And it’s extremely important to take that into account.”

The effect Yang and colleagues detailed occurs when physicists accelerate opposing beams of heavy ions in opposite directions and point the beams at one another. The ions are nuclei of massive elements like gold or lead, and ion accelerators are particularly useful for studying the strong force, which binds fundamental building blocks called quarks in the neutrons and protons of atomic nuclei. Physicists have used heavy ion collisions to overcome those interactions and observe both quarks and gluons, the particles quarks exchange when they interact via the strong force.

But nuclei aren’t the only things that collide in heavy ion accelerators. Ion beams also produce electric and magnetic fields that shroud each nuclei in the beam with its own cloud of light. These clouds move with the nuclei, and when clouds from opposing beams meet, individual particles of light called photons can meet head-on.

In a PRL study published in July, Yang and colleagues used data from RHIC to show photon-photon collisions produce matter from pure energy. In the experiments, the light smashups occurred along with nuclei collisions that created a primordial soup called quark-gluon plasma, or QGP.

“At RHIC, you can have the photon-photon collision create its mass at the same time as the formation of quark-gluon plasma,” Yang said. “So, you’re creating this new mass inside the quark-gluon plasma.”

Yang’s Ph.D. thesis work on the RHIC data published in PRL in 2018 suggested photon collisions might be affecting the plasma in a slight but measurable way. Li said this was both intriguing and surprising, because the photon collisions are an electromagnetic phenomena, and quark-gluon plasmas are dominated by the strong force, which is far more powerful than the electromagnetic force.

“To interact strongly with quark-gluon plasma, only having electric charge is not enough,” Li said. “You don’t expect it to interact very strongly with quark-gluon plasma.”

He said a variety of theories were offered to explain Yang’s unexpected findings.

“One proposed explanation is that the photon-photon interaction will look different not because of quark-gluon plasma, but because the two ions just get closer to each other,” Li said. “It’s related to quantum effects and how the photons interact with each other.”

If quantum effects had caused the anomalies, Yang surmised, they could create detectable interference patterns when ions narrowly missed one another but photons from their respective light clouds collided.

“So the two ions, they do not strike each other directly,” Yang said. “They actually pass by. It’s called an ultraperipheral collision, because the photons collide but the ions don’t hit each other.”

Compact Muon Solenoid Experiment at LHC

The Compact Muon Solenoid experiment at the European Organization for Nuclear Research’s Large Hadron Collider. Credit: CERN

Theory suggested quantum interference patterns from ultraperipheral photon-photon collisions should vary in direct proportion to the distance between the passing ions. Using data from the LHC’s Compact Muon Solenoid (CMS) experiment, Yang, Li and colleagues found they could determine this distance, or impact parameter, by measuring something wholly different.

“The two ions, as they get closer, there’s a higher probability the ion can get excited and start to emit neutrons, which go straight down the beam line,” Li said. “We have a detector for this at CMS.”

Each ultraperipheral photon-photon collision produces a pair of particles called muons that typically fly from the collision in opposite directions. As predicted by theory, Yang, Li and colleagues found that quantum interference distorted the departure angle of the muons. And the shorter the distance between the near-miss ions, the greater the distortion.

Li said the effect arises from the motion of the colliding photons. Although each is moving in the direction of the beam with its host ion, photons can also move away from their hosts.

“The photons have motion in the perpendicular direction, too,” he said. “And it turns out, exactly, that that perpendicular motion gets stronger as the impact parameter gets smaller and smaller.

“This makes it appear like something’s modifying the muons,” Li said. “It looks like one is going at a different angle from the other, but it’s really not. It’s an artifact of the way the photon’s motion was changing, perpendicular to the beam direction, before the collision that made the muons.”

Yang said the study explains most of the anomalies he previously identified. Meanwhile, the study established a novel experimental tool for controlling the impact parameter of photon interactions that will have far-reaching impacts.

“We can comfortably say that the majority came from this QED effect,” he said. “But that doesn’t rule out that there are still effects that relate to the quark-gluon plasma. This work gives us a very precise baseline, but we need more precise data. We still have at least 15 years to gather QGP data at CMS, and the precision of the data will get higher and higher.”

Reference: “Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at √sNN=5.02  TeV” by A. M. Sirunyan et al. (CMS Collaboration), 17 September 2021, Physical Review Letters.
DOI: 10.1103/PhysRevLett.127.122001

LHC and CMS are supported by the European Organization for Nuclear Research, the Department of Energy, the National Science Foundation and scientific funding agencies in Austria, Belgium, Brazil, Bulgaria, China, Colombia, Croatia, Cyprus, Ecuador, Estonia, Finland, France, Germany, Greece, Hungary, India, Iran, Ireland, Italy, South Korea, Latvia, Lithuania, Malaysia, Mexico, Montenegro, New Zealand, Pakistan, Poland, Portugal, Russia, Serbia, Spain, Sri Lanka, Switzerland, Taiwan, Thailand, Turkey, Ukraine and the United Kingdom.,49784793.html,49784799.html


Interplay Between Magnetic Force and Gravity in Massive Star Formation

The magnetic field is part of one of the four fundamental forces in nature. It plays a vital role in everyday life, from producing electricity in hydroelectric power plants to diagnosing diseases in medicine. Historically, the Earth’s magnetic field served as a compass for travelers before modern technology was available. Crucially for life, the Earth’s magnetic field acts as a shield protecting us from charged particles emanating from the Sun, which are accelerated by the Sun’s magnetic field. Removing this shield would very likely extinguish life on Earth. So it may not be a surprise that magnetic fields also play an outstanding role far away from us, outside the solar system.

The Sun was born in a cloud of dust and gas about 5 billion years ago, and magnetic fields may have controlled its birth. Indeed, scientists still debate how magnetic fields affect the process of star formation. Among all of the stars, the formation of the most massive ones is still shrouded in uncertainty. For years, scientists believed that the magnetic field plays an essential role in the high-mass star formation process. But they only had a limited number of observational evidence to prove or disprove this theory.

A team led by Patricio Sanhueza of the National Astronomical Observatory of Japan used ALMA to tackle this long-standing problem. They observed a source called IRAS 18089-1732, a high-mass star-forming region 7600 light-years away, finding a well-organized magnetic field that resembles a spiral “whirlpool.” Contrary to their predictions, however, the magnetic field appears overwhelmed by another of the four fundamental forces in nature, gravity.

“In these extreme environments, gravity can shape the gas morphology and dominate the energy budget,” says Sanhueza. They further discovered that the magnetic field lines are twisted from the immense gravitational infall of gas.

The minor contribution of the magnetic field has caught them by surprise since they have previously found evidence of strong magnetic fields in a similar star-forming environment. This ALMA discovery reveals the diversity in which high-mass stars form, concluding, somewhat unexpectedly, that high-mass stars can be born in either strongly or weakly magnetized environments, “feeling” the interplay between different forces as we experience here on Earth.

These observation results were presented as Patricio Sanhueza et al. “Gravity-driven Magnetic Field at ∼1000 au Scales in High-mass Star Formation” in the Astrophysical Journal Letters on June 30, 2021.

Reference: “Gravity-driven Magnetic Field at ∼1000 au Scales in High-mass Star Formation” by Patricio Sanhueza, Josep Miquel Girart, Marco Padovani, Daniele Galli, Charles L. H. Hull, Qizhou Zhang, Paulo Cortes, Ian W. Stephens, Manuel Fernández-López, James M. Jackson, Pau Frau, Patrick M. Koch, Benjamin Wu, Luis A. Zapata, Fernando Olguin, Xing Lu, Andrea Silva, Ya-Wen Tang, Takeshi Sakai, Andrés E. Guzmán, Ken’ichi Tatematsu, Fumitaka Nakamura and Huei-Ru Vivien Chen, 30 June 2021, Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/ac081c,49784793.html,49784799.html


Cumbre Vieja Lights Up the Night – Astronaut Photo Captures Volcanic Eruption From Space

An astronaut photograph shows the proximity of a volcanic eruption to nearby cities on the Spanish island of La Palma.

A volcanic eruption on La Palma in the Canary Islands has destroyed hundreds of homes and led thousands of people to evacuate. The proximity of the lava to developed areas is especially apparent in this photograph, shot with a handheld camera on September 22, 2021, by an astronaut onboard the International Space Station (ISS).

The eruption began on September 19 from fissures on the western flanks of Cumbre Vieja, an elongated volcanic range spanning the southern two-thirds of the island. Observers reported an initial explosion that day that lofted ash and gas thousands of feet into the air.

Pulsating fountains of lava have since been feeding lava flows running downslope, engulfing trees, banana plantations, homes, and infrastructure. According to news reports, more than 5,000 people evacuated as lava flows threatened neighborhoods in El Paso, Los Llanos de Aridan, and Tazacorte. Ashfall and sulfur dioxide emissions affected nearby communities as well.

La Palma is one of the youngest of the Canary Islands, a volcanic archipelago off the west coast of Morocco. La Palma’s Cumbre Vieja last erupted in 1971. “While 50 years is a relatively long time for humans, it’s a geological moment in terms of this very active volcano,” said William Stefanov, a remote sensing scientist for the International Space Station science office.

Stefanov previously wrote about La Palma in 2008, describing geologic features visible in an astronaut photograph of the same area. By day, it becomes easy to see Cumbre Vieja’s numerous cinder cones, craters, and lava flows.

Astronaut photograph taken by a member of the Expedition 65 crew. The image has been cropped and enhanced to improve contrast, and lens artifacts have been removed. The International Space Station Program supports the laboratory as part of the ISS National Lab to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet.,49777739.html,49777747.html



Untangling the Formation of Planetary Systems With Heavy Hydrogen

An international research team using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the distribution of heavy hydrogen, or deuterium, in planet formation sites with the highest resolution ever achieved. This provides clues to understand the physical and chemical conditions during the formation of exoplanets and Solar System objects.

“The various bodies in our Solar System have a variety of chemical compositions,” says Yuri Aikawa, a professor at the University of Tokyo. “This variety could be due to differences in the chemical composition and physical state at their formation sites. Revealing the chemical variation within the planet-forming disks is thus fundamental to the study of planet formation.”

Protoplanetary disks around young stars contain a variety of molecules, each of which emits radio waves of specific wavelengths. In this study, researchers utilized the superb resolution and sensitivity of ALMA to understand the physical and chemical conditions in planet forming disks.

Hydrogen Cyanide in HD 163296

This image of ALMA data from the young star HD 163296 shows hydrogen cyanide emission. The MAPS project zoomed in on hydrogen cyanide and other organic and inorganic compounds in planet-forming disks to gain a better understanding of the compositions of young planets and how the compositions link to where planets form in a protoplanetary disk. Credit: ALMA (ESO/NAOJ/NRAO)/D. Berry (NRAO), K. Öberg et al (MAPS)

Gianni Cataldi, a postdoc at the University of Tokyo and the National Astronomical Observatory of Japan, and his team focused on deuterium, the heavy brother of hydrogen, in protoplanetary disks. Although there is only one deuterium atom for every 100,000 hydrogen atoms, it is known that the ratio is higher in certain molecules. This deuterium enrichment can be used as a footprint to infer where an object was formed in a disk.

The team analyzed ALMA data and measured the spatial distribution of the deuterium abundance ratio in protoplanetary disks. They found that the deuterium abundance ratios differed by a factor of about 100 among different locations within a single disk, with the abundance ratios becoming smaller closer to the central star.

“Two major reactions are thought to be responsible for the deuterium enrichment; one is active in very low-temperature regions and the other remain effective even in the relatively warm regions. Our observations show that both play an important role in disks,” says Cataldi.

Comparing the deuterium abundance ratios observed in protoplanetary disks with those of Solar System objects can provide information on the origin of the objects. For example, the deuterium abundance ratio in HCN molecules was measured for Comet Hale-Bopp, which approached the Sun around 1997 and could be seen brightly from Earth. The value for Comet Hale-Bopp was smaller than the one measured in the protoplanetary disks this time.

“This may suggest that Comet Hale-Bopp formed in the inner part of the disk, close to the young Sun (within 30 au),” says Yoshihide Yamato, a graduate student at the University of Tokyo and a co-author of the research paper. “Another possibility is that the HCN molecules in the comet originated from ices that condensed from the gas cloud at a much earlier stage of the formation of the disk, and were not affected by the deuterium enrichment in the disk.”

These observations are part of an ALMA Large Program, “Molecules with ALMA at Planet-forming Scales,” or MAPS, to detect radio waves emitted by molecules in protoplanetary disks with high spatial resolution. In this program researchers observed protoplanetary disks around five young stars, IM Lupi, GM Aurigae, AS 209, HD 163296, and MWC 480 with ALMA to infer the distribution of about 20 molecules, including deuterated molecules such as DCN and N2D+.

“With ALMA we were able to see how molecules are distributed where exoplanets are currently assembling,” said Karin Öberg, an astronomer at the Center for Astrophysics | Harvard & Smithsonian (CfA) and the Principal Investigator for MAPS. “One of the really exciting things we saw is that the planet-forming disks around these five young stars are factories of a special class of organic molecules, so-called nitriles, which are implicated in the origins of life here on Earth.”

Scientists also observed complex organic molecules like HC3N, CH3CN, and c-C3H2; notably these contain carbon, and therefore are most likely to act as the feedstock of larger, prebiotic molecules. Although these molecules have been detected in protoplanetary disks before, MAPS is the first systematic study across multiple disks at very high spatial resolution and sensitivity, and the first study to find the molecules in such significant quantities at small scales. “We found more of the large organic molecules than expected, a factor of 10 to 100 more, located in the inner disks on scales of the Solar System, and their chemistry appears similar to that of Solar System comets,” said John Ilee, an astronomer at the University of Leeds and the lead author of a MAPS paper. “The presence of these large organic molecules is significant because they are the stepping-stones between simpler carbon-based molecules such as carbon monoxide, which is found in abundance in space, and the more complex molecules that are required to create and sustain life.”

Gas and Dust in Protoplanetary Disk Surrounding Young Star

In this artist’s conception, planets form from the gas and dust in the protoplanetary disk surrounding the young star. The gas is made up of many different molecules, including hydrogen cyanide and more complex nitriles—linked to the development of life on Earth—and other organic and inorganic compounds. From simple organic compounds to the more complex, the soup of molecules in a particular location in the disk shapes the future of the planet forming there, and determines whether or not that planet could support life as we know it. Credit: M.Weiss/Center for Astrophysics/Harvard & Smithsonian

Aikawa and the MAPS team also revealed the spatial distribution of ionized molecules in the disks. They found that ionized molecules are less abundant in the region inside the 100-au radius of disks. If ionized, the gas in the disk is more susceptible to magnetic fields, which can cause gas to start outflowing or, conversely, allow gas to flow into the central star, greatly affecting the growth of stars and planets. The observation also suggests that the ionization rate in the disk midplane might vary from object to object, which indicates that the physical conditions of planet-forming disks are quite complicated.

“I believe that we can approach the mystery of the formation process of our Solar System by combing the observations of protoplanetary disks using ALMA, observations and analysis of Solar System material, and predictions based on theoretical research,” summarizes Aikawa.

Paper Information

These observation results are presented as Gianni Cataldi et al. “Molecules with ALMA at Planet-forming Scales (MAPS) X: Studying deuteration at high angular resolution towards protoplanetary disks” and Yuri Aikawa et al. “Molecules with ALMA at Planet-forming Scales (MAPS) XIII: HCO+ and disk ionization structure” and other 18 papers in the MAPS special issue of the Astrophysical Journal Supplement Series.

This research was supported by:

JSPS KAKENHI (No. 18H05222, 20H05844, 20H05847, 18H05441, JP17K14244 and JP20K04017), NAOJ ALMA Joint Scientific Research Program (2019-13B, 2018-10B), World-leading Innovative Graduate Study Program (WINGS) of the University of Tokyo, NASA Hubble Fellowship grant (HST-HF2-51401.001, HST-HF2-51419.001, HST-HF2-51427.001-A, HST-HF2-51429.001-A, HST-HF2-51405.001-A, HST-HF2-51460.001-A), NASA Grant (No. 17-XRP17 2-0012), NSF AAG Grant (#1907653), FONDECYT Iniciación 11180904 and ANID project Basal AFB-170002, NSF Graduate Research Fellowship under Grant No. DGE1745303, Natural Science Foundation of China grant No. 11973090, David and Lucille Packard Foundation and Johnson & Johnson’s WiSTEM2D Program, Science and Technology Facilities Council of the United Kingdom (ST/T000287/1, ST/R000549/1, MR/T040726/1), CNES fellowship grant, ANR of France under contracts ANR-16-CE31-0013 and ANR-15-IDEX-02, Simons Foundation (SCOL #321183), Wisconsin Alumni Research Foundation, and Smithsonian Institution.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.



Exploring Alien Planets: New Cereal Box-Sized Spacecraft Has Mighty Goals

A new miniature satellite designed and built at CU Boulder’s Laboratory for Atmospheric and Space Physics (LASP) is providing proof that “cute” things can take on big scientific challenges.

The Colorado Ultraviolet Transit Experiment (CUTE) is slated to launch into space on September 27, 2021. The approximately $4 million spacecraft, a smaller-than-usual type of satellite known as a “CubeSat,” is about as large as a “family-sized box of Cheerios,” said LASP researcher Kevin France, principal investigator for the mission.

But it has mighty goals: Over the course of about 7 months, the mission will track the volatile physics around a class of extremely hot planets orbiting stars far away from Earth. It’s the first CubeSat mission funded by NASA to peer at these distant worlds—marking a major test of what small spacecraft may be capable of.

“It’s an experiment that NASA is conducting to see how much science can be done with a small satellite,” said France, professor in the Department of Astrophysical and Planetary Sciences. “That’s exciting but also a little daunting.”

Rick Kohnert and Arika Egan

Rick Kohnert, systems engineer for CUTE, and Arika Egan pose with the small satellite at LASP. Credit: Kevin France

The mission will blast off aboard a United Launch Alliance Atlas V rocket alongside the Landsat 9 satellite from Vandenberg Space Force Base in Lompoc, California.

Once CUTE enters into orbit around Earth, it will set its sights on a suite of exoplanets called “hot Jupiters.” As their names suggest, these gaseous planets are both large and scalding hot, reaching temperatures of thousands of degrees Fahrenheit. The satellite’s findings will help scientists to better understand how these planets, and many others, evolve and even shrink over billions of years.

In recent years, LASP has led the development of multiple CubeSat missions to explore everything from the sun’s activity to supernovae in distant galaxies. Unlike larger space missions, which often net a price tag in the hundreds of millions of dollars, engineers can produce CubeSats on the cheap.

CUTE Launch System

A team installs CUTE into its launch system. Credit: NASA/WFF

“As little as a decade ago, many in the space community expressed the opinion that CubeSat missions were little more than ‘toys,’” said LASP Director Daniel Baker. “There was recognition that small spacecraft could be useful as teaching and training tools, but there was widespread skepticism that forefront science could be done with such small platforms. I am delighted that LASP and the University of Colorado have led the way in demonstrating that remarkable science can be done with small packages. CUTE and other CU CubeSat missions are changing the landscape for basic research.”

Scorching planets

CUTE, in particular, tackles a hot topic in astrophysics.

Hot Jupiters, and their even more chaotic cousins ultra-hot Jupiters, are an especially inhospitable class of gaseous worlds. Take KELT-9b: This planet, which sits in a stellar system about 670 light years from our own, has a mass nearly three times larger than Jupiter’s. But KELT-9b also orbits much closer to its home star—so close that temperatures on the planet hit a mind-boggling 7,800 degrees Fahrenheit.

“Because these planets are parked so close to their parent stars, they receive a tremendous amount of radiation,” France said.


CUTE logo. Credit: LASP

That radiation takes a toll on a planet over time. At those temperatures, the atmospheres of hot Jupiters begin to expand like a pufferfish and may even tear away and escape into space.

Which is where CUTE comes in: Throughout its mission, the spacecraft will measure how fast gases are escaping from a minimum of 10 hot Jupiters, including KELT-9b. It will achieve this feat using its unique, rectangular telescope design, which was pioneered at LASP.

“Ultimately CUTE has one major purpose, and that is to study the inflated atmospheres of these really hot, pretty gassy exoplanets,” said Arika Egan, a graduate student at LASP who has helped to develop the mission. “The inflation and escape these exoplanetary atmospheres undergo are on scales just not seen in our own solar system.”

France added that the team’s findings may tell scientists a lot not just about hot Jupiters but about the full range of planets that exist in the galaxy. That includes small and rocky worlds like Earth and its close neighbors. (Mars, for example, also lost much of its atmosphere over nearly 3 billion years, making the planet uninhabitable for humans).

“The more places we understand atmospheric escape, the better we understand atmospheric escape as a whole,” France said. “We can then apply these findings to different types of planets.”

Cooking up Alien Atmospheres on Earth

This artist’s concept shows planet KELT-9b, an example of a “hot Jupiter,” or a gas giant planet orbiting very close to its parent star. Credits: NASA/JPL-Caltech

Bon voyage

He noted that CUTE is well-suited for probing the atmospheres of alien worlds. Unlike larger space missions, such as the Hubble Space Telescope, this satellite only has one job to do: To scan as many hot Jupiters as it can during its short lifespan.

France said that, after spending four years developing CUTE in Boulder, he and his team are feeling bittersweet about the mission’s upcoming launch. Egan, for her part, is eager for the little craft to make a small dent in questions about Earth’s place in the galaxy.

“When you look up at the sky and see thousands of stars, that is existential on its own,” she said. “But then you think about the planets we’ve discovered around those stars, thousands of planets. We’ve just barely scratched the surface of characterizing them, of understanding their diversity. How little we know is astounding, and joining the effort to learn more is fulfilling.”

Science team members on the CUTE mission include researchers from the University of Leiden and University of Amsterdam in the Netherlands, University of Arizona, Space Research Institute of the Austrian Academy of Sciences and the University of Toulouse in France.


Earless Worms Can “Listen” – Sense Sound Waves Through Their Skin

Common model species can sense sound waves without ears, providing a new tool for studying auditory sensation.

A species of roundworm that is widely used in biological research can sense and respond to sound, despite having no ear-like organs, according to a new study from the University of Michigan Life Sciences Institute.

The findings, published on September 22, 2021, in the journal Neuron, offer a new biological tool for studying the genetic mechanisms underlying the sense of hearing.

Researchers in the lab of Shawn Xu at the Life Sciences Institute have been using Caenorhabditis elegans to study sensory biology for more than 15 years. When his lab began this work, these millimeter-long worms were thought to have only three main senses: touch, smell, and taste.

Xu’s lab has since established that worms have the ability to sense light, despite having no eyes, as well as the ability to sense their own body posture during movement (also known as the sense of proprioception).

“There was just one more primary sense missing—auditory sensation, or hearing,” said Xu, LSI research professor and the study’s senior author. “But hearing is unlike other senses, which are found widely across other animal phyla. It’s really only been discovered in vertebrates and some arthropods. And the vast majority of invertebrate species are thus believed to be sound insensitive.”

The scientists discovered, however, that worms responded to airborne sounds in the range of 100 hertz to 5 kilohertz—a range broader than some vertebrates can sense. When a tone in that range was played, worms quickly moved away from the source of the sound, demonstrating that they not only hear the tone but sense where it’s coming from.

The researchers conducted several experiments to ensure the worms were responding to airborne sound waves, and not vibrations on the surface worms were resting on. Rather than ‘feeling’ the vibrations through the sense of touch, Xu believes the worms sense these tones by acting as a sort of whole-body cochlea, the spiraled, fluid-filled cavity in the inner ear of vertebrates.

The worms have two types of auditory sensory neurons that are tightly connected to the worms’ skin. When sound waves bump into the worms’ skin, they vibrate the skin, which in turn may cause the fluid inside the worm to vibrate in the same way that fluid vibrates in a cochlea. These vibrations activate the auditory neurons bound to the worms’ skin, which then translate the vibrations into nerve impulses.

And because the two neuron types are localized in different parts of the worm’s body, the worm can detect the sound source based on which neurons are activated. This sense may help worms to detect and evade their predators, many of which generate audible sounds when hunting.

The research raises the possibility that other earless animals with a soft body like the roundworm C. elegans—such as flatworms, earthworms, and mollusks—might also be able to sense sound.

“Our study shows that we cannot just assume that organisms that lack ears cannot sense sound,” said Xu, who is also a professor of molecular and integrative physiology at the U-M Medical School.

While the worms’ auditory sense does bear some similarities to how the auditory system works in vertebrates, this new research reveals important differences from how either vertebrates or arthropods sense sound.

“Based on these differences, which exist down to the molecular level, we believe the sense of hearing has probably evolved independently, multiple times across different animal phyla,” Xu said. “We knew that hearing looks very different between vertebrates and arthropods.

“Now, with C. elegans, we have found yet another different pathway for this sensory function, indicating convergent evolution. This stands in sharp contrast to the evolution of vision, which, as proposed by Charles Darwin, occurred quite early and probably only once with a common ancestor.”

Now that all major senses have been observed in C. elegans, Xu and colleagues plan to delve further into the genetic mechanisms and neurobiology that drive these sensations.

“This opens a whole new field for studying auditory sensation, and mechanosensation as a whole,” he said. “With this new addition of auditory sensation, we have now fully established that all primary senses are found in C. elegans, making them an exceptional model system for studying sensory biology.”

Reference: “The nematode C. elegans senses airborne sound” by Adam J. Iliff, Can Wang, Elizabeth A. Ronan, Alison E. Hake, Yuling Guo, Xia Li, Xinxing Zhang, Maohua Zheng, Jianfeng Liu, Karl Grosh, R. Keith Duncan and X.Z. Shawn Xu, 22 September 2021, Neuron.
DOI: 10.1016/j.neuron.2021.08.035

Study authors are: Adam Iliff, Can Wang, Elizabeth Ronan, Alison Hake, Yuling Guo, Xia Li, Xinxing Zhang, Maohua Zheng, Karl Grosh, R. Keith Duncan and X.Z. Shawn Xu of U-M ; and Jianfeng Liu of the Huazhong University of Science and Technology, China.


Integrated Strategies To Meet Biodiversity, Climate, and Water Objectives

We are collectively failing to conserve the world’s biodiversity and to mobilize natural solutions to help curb global warming. A new study carried out by the Nature Map Consortium, shows that managing a strategically placed 30% of land for conservation could safeguard 70% of all considered terrestrial plant and vertebrate animal species, while simultaneously conserving more than 62% of the world’s above and below ground vulnerable carbon, and 68% of all clean water.

In November, governments will convene in Glasgow under the UN Framework Convention on Climate Change. Natural climate solutions for mitigation and adaptation will be high on the agenda, as illustrated by the recent G7 Nature Compact and the Leaders’ Pledge for Nature signed by 88 heads of government. In 2022, China will host the Conference of the Parties to the UN Convention on Biological Diversity to agree a new Global Biodiversity Framework, including proposed targets to conserve at least 30% of land and the ocean by 2030 and to apply integrated biodiversity-inclusive spatial planning to address land- and sea-use change.

To stop the decline of nature and meet the Paris Agreement objectives, strategies need to be designed and implemented for better managing land use for agriculture, infrastructure, biodiversity conservation, climate change mitigation and adaptation, water provision, and other needs. As underscored by the draft Global Biodiversity Framework and current efforts in Costa Rica, China, and other countries, this requires spatial planning to assess where biodiversity conservation would bring the greatest benefits to other policy objectives.

To support such integrated strategies, a paper by the Nature Map consortium just published in the journal Nature Ecology and Evolution presents an approach for spatial planningThe paper set out to determine areas of global importance to manage for conservation to simultaneously protect the greatest number of species from extinction, conserve vulnerable terrestrial carbon stocks, and safeguard freshwater resources. This effort is the first of its kind to truly integrate biodiversity, carbon, and water conservation within a common approach and a single global priority map. Another distinct novelty of the work is the consideration of a comprehensive set of plant distribution data (about 41% of all plant species) in the analyses, and the setting of species targets for extinction risk.

“To implement post-2020 biodiversity strategies such as the Global Biodiversity Framework, policymakers and governments need clarity on where resources and conservation management could bring the greatest potential benefits to biodiversity. At the same time, biodiversity should not be looked at in isolation. Other aspects such as conserving carbon stocks within natural ecosystems should be considered alongside biodiversity, so that synergies and trade-offs can be evaluated when pursuing multiple objectives,” explains lead author Martin Jung, a researcher in the IIASA Biodiversity, Ecology, and Conservation Research Group.

“The new global priority maps developed as part of the study show that when it comes to identifying new areas to manage for conservation, such as protected areas or community-managed forests, quality (location and management effectiveness) is more important than quantity (global extent). To aim for quality of conservation and achieve the goal of safeguarding biodiversity, government and non-government agencies should be setting objectives and indicators for what they want: conserving species, healthy ecosystems and their services to people, and identify areas to conserve accordingly. Our study provides guidance on how to do that,” adds study coauthor Piero Visconti who leads the Biodiversity, Ecology, and Conservation Research Group at IIASA.

The researchers note that conserving a strategically located 30% of land could yield major gains for conservation, climate, and water provisioning. Specifically, it would safeguard more than 62% of the world’s above and below ground vulnerable carbon and 68% of all fresh water, while ensuring that over 70% of all terrestrial vertebrate and plant species are not threatened with extinction. As the work shows, meeting these objectives will require strategic placement of conservation interventions using spatial planning tools like Nature Map and, crucially, require enabling their stewards to effectively manage these areas.

“This type of approach can support decision-makers in prioritizing locations for conservation efforts, and shows just how much both people and nature could gain. To be successful long-term, these areas must be managed effectively and equitably. That includes respecting the rights of, and empowering indigenous peoples and local communities,” says co-author Lera Miles, Principal Technical Specialist – Planning for Places, UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC).

“Maps for integrated spatial planning, as called for in the draft Global Biodiversity Framework, are necessary for meeting climate and biodiversity objectives. They are also critical for financing natural climate solutions, improving carbon markets, and greening supply chains,” says Guido Schmidt-Traub, an author of the paper who has also written a related commentary in the same issue of Nature Ecology and Evolution.

The study demonstrates that optimizing jointly for biodiversity, carbon, and water maximizes synergies that can be gained from conservation compared to placing emphasis on any individual asset alone. Through strategic action in selected locations, significant benefits can be achieved across all three dimensions. Conservation efforts however need to be greatly scaled-up by all actors in society to meet global biodiversity and climate objectives.

Jung points out that the analysis identifies the upper potential value of any given area to be managed for conservation at global scale. The team by no means suggests or implies that all areas with high value are to be placed under strict protection, recognizing that these management choices are decided by national and local stakeholders.

The team’s analyses also quantitatively confirm many areas earlier described as biodiversity hotspots, which were previously based on expert opinion alone. By including selected data of the global tree of life that have so far been ignored in global prioritizations – such as reptiles and plants – the team identified new areas to be considered as important for biodiversity at a global scale. These include, for instance, the southeastern United States and the Balkans. The research has also been useful in updating and improving the information on all areas of global importance for biodiversity conservation.

“Our methods, data, and the global priority maps are meant to be used as a decision support tool for major conservation initiatives. Furthermore, the study lays the groundwork for a new generation of integrated prioritizations and planning exercises that all actors can use to inform conservation choices at the regional, national and sub-national levels,” Jung concludes.

The global priority maps can be explored interactively on the UN Biodiversity lab to support decision-makers and generate insight and impact for conservation and sustainable development.

Reference: “Areas of global importance for conserving terrestrial biodiversity, carbon, and water” by Martin Jung, Andy Arnell, Xavier de Lamo, Shaenandhoa García-Rangel, Matthew Lewis, Jennifer Mark, Cory Merow, Lera Miles, Ian Ondo, Samuel Pironon, Corinna Ravilious, Malin Rivers, Dmitry Schepashenko, Oliver Tallowin, Arnout van Soesbergen, Rafaël Govaerts, Bradley L. Boyle, Brian J. Enquist, Xiao Feng, Rachael Gallagher, Brian Maitner, Shai Meiri, Mark Mulligan, Gali Ofer, Uri Roll, Jeffrey O. Hanson, Walter Jetz, Moreno Di Marco, Jennifer McGowan, D. Scott Rinnan, Jeffrey D. Sachs, Myroslava Lesiv, Vanessa M. Adams, Samuel C. Andrew, Joseph R. Burger, Lee Hannah, Pablo A. Marquet, James K. McCarthy, Naia Morueta-Holme, Erica A. Newman, Daniel S. Park, Patrick R. Roehrdanz, Jens-Christian Svenning, Cyrille Violle, Jan J. Wieringa, Graham Wynne, Steffen Fritz, Bernardo B. N. Strassburg, Michael Obersteiner, Valerie Kapos, Neil Burgess, Guido Schmidt-Traub and Piero Visconti, 23 August 2021, Nature Ecology and Evolution.
DOI: 10.1038/s41559-021-01528-7

* The Nature Map project was launched by the International Institute for Applied Systems Analysis (IIASA), the International Institute for Sustainability (IIS), the UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), and the UN Sustainable Development Solutions Network (SDSN). Other partners include Botanic Gardens Conservation International (BGCI), the Botanical Information and Ecology Network (BIEN), Global Assessment of Reptile Distributions (GARD), the Global Biodiversity Information Facility (GBIF), iNaturalist, Manaaki Whenua – Landcare Research, OpenLandMap, the UN Biodiversity Lab, and SYSTEMIQ Ltd. The Norwegian Ministry of Climate and Environment (KLD) provides financial support.,49307325.html


Naomi Osaka considering taking another break from tennis after US Open loss

In a stunning result, US Open defending champion Naomi Osaka lost her third-round match to Canada’s Leylah Fernandez in three sets, as the world No. 3 and four-time major champion uncharacteristically showed signs of frustration on the court and expressed doubts after the match.

“I honestly don’t know when I’m going to play my next tennis match,” Osaka said through tears in a press conference. “I think I’m going to take a break from playing for a while.”
Osaka, who was leading by a set, broke Fernandez for a 6-5 lead in the second set. But when serving for the match, Osaka couldn’t close it out. During the tiebreak, Osaka slammed her racquet to the court.
Fernandez, 18, would win the tiebreak to force a final set, and then the world No. 73 broke Osaka to open the third. Not long after that, Osaka hit a ball into the crowd and was hit with a code violation for ball abuse.
Fernandez went on to win the match 5-7, 7-6(2), 6-4.
The Canadian, who turns 19 on Monday, will next face No. 16 seed and three-time major champion Angelique Kerber of Germany.
Fernandez — who played a brilliant match — gave credit to the crowd in her on-court interview, as the Canadian had tremendous support from those in attendance.
Canada's Leylah Fernandez celebrates after winning her third round match against Japan's Naomi Osaka.

“It felt so energetic,” the Canadian teen told ESPN. “The fans were amazing. They were so loud. They helped me so much throughout the second set and then the third. I’m just so happy to be on the big stage finally.”
In her on-court interview after the win, she said she knew “from the very beginning” that she could beat the defending US Open champion.
“Right before the match I knew I was able to win,” she said.
Naomi Osaka says there’s things she ‘did wrong’ during her 2021 French Open withdrawal
Osaka expressed regret after the match regarding her emotions shown on the court.
“Yeah, I’m really sorry about that. I’m not really sure why. Like, I felt like I was pretty — I was telling myself to be calm, but I feel like maybe there was a boiling point,” she said.
“I feel like for me recently, like, when I win I don’t feel happy,” she said. “I feel more like a relief. And then when I lose, I feel very sad. I don’t think that’s normal.”
In May, Osaka withdrew from the French Open after being fined $15,000 for refusing to speak to the media at Roland Garros, and chose to not participate in this year’s Wimbledon Championships.
Fernandez was asked about Osaka losing her composure during the match.
“Honestly I wasn’t focusing on Naomi,” Fernandez said. “I was only focusing on myself and what I needed to do.”
As for turning the match around when she broke back against Osaka to level the second set at 6-6, Fernandez said, “I guess I wanted to stay on court a little bit longer, and I wanted to put on a show for everybody here. One hour was just not enough for me on court.”



1,000th Near-Earth Asteroid Observed by Planetary Radar Since 1968

Seven days after this historic milestone, a massive antenna at NASA’s Deep Space Network Goldstone complex imaged another, far larger object.

On August 14, 2021, a small near-Earth asteroid (NEA) designated 2021 PJ1 passed our planet at a distance of over 1 million miles (about 1.7 million kilometers). Between 65 and 100 feet (20 and 30 meters) wide, the recently discovered asteroid wasn’t a threat to Earth. But this asteroid’s approach was historic, marking the 1,000th NEA to be observed by planetary radar in just over 50 years.

And only seven days later, planetary radar observed the 1,001st such object, but this one was much larger.

Since the first radar observation of the asteroid 1566 Icarus in 1968, this powerful technique has been used to observe passing NEAs and comets (collectively known as near-Earth objects, or NEOs). These radar detections improve our knowledge of NEO orbits, providing the data that can extend calculations of future motion by decades to centuries and help definitively predict if an asteroid is going to hit Earth, or if it’s just going to pass close by. For example, recent radar measurements of the potentially hazardous asteroid Apophis helped eliminate any possibility of it impacting Earth for the next 100 years.

Goldstone Radar Detection Asteroid 2021 PJ1

This figure represents the radar echo from asteroid 2021 PJ1 on Aug. 14, 2021. The horizontal axis represents the difference in predicted Doppler frequency and the new radar measurement. Credit: NASA/JPL-Caltech

In addition, they can provide scientists with detailed information on physical properties that could be matched only by sending a spacecraft and observing these objects up close. Depending on an asteroid’s size and distance, radar can be used to image its surface in intricate detail while also determining its size, shape, spin rate, and whether or not it is accompanied by one or more small moons.

In the case of 2021 PJ1, the asteroid was too small and the observing time too short to acquire images. But as the 1,000th NEA detected by planetary radar, the milestone highlights the efforts to study the NEAs that have passed close to Earth.

“2021 PJ1 is a small asteroid, so when it passed us at a distance of over a million miles, we couldn’t obtain detailed radar imagery,” said Lance Benner, who leads NASA’s asteroid radar research program at NASA’s Jet Propulsion Laboratory in Southern California. “Yet even at that distance, planetary radar is powerful enough to detect it and measure its velocity to a very high precision, which improved our knowledge of its future motion substantially.”

Benner and his team led this effort using the 70-meter (230-foot) Deep Space Station 14 (DSS-14) antenna at the Deep Space Network’s Goldstone Deep Space Complex near Barstow, California, to transmit radio waves to the asteroid and receive the radar reflections, or “echoes.”

Catching (Radio) Waves

Of all the asteroids observed by planetary radar, well over half were observed by the large 305-meter (1,000-foot) telescope at Arecibo Observatory in Puerto Rico before it was damaged and decommissioned in 2020. The antenna collapsed soon after. Goldstone’s DSS-14 and 34-meter (112-foot) DSS-13 antennas have observed 374 near-Earth asteroids to date. Fourteen NEAs have also been observed in Australia using antennas at the Deep Space Network’s Canberra Deep Space Communication Complex to transmit radio waves to the asteroids and the CSIRO’s Australian Telescope Compact Array and Parkes Observatory in New South Wales to receive the radar reflections.

Explore NASA’s massive 70-meter (230-foot) DSS-14 antenna at the Goldstone Deep Space Communications Complex in Barstow, California, in this 360-degree video. Along with communicating with spacecraft throughout the solar system, DSS-14 and other DSN antennas can also be used to conduct radio science. Credit: NASA/JPL-Caltech

Nearly three-quarters of all NEA radar observations have been made since NASA’s NEO Observations Program, now a part of its Planetary Defense Program, increased funding for this work 10 years ago.

The most recent asteroid to be observed by radar made its approach by Earth only a week after 2021 PJ1. Between Aug. 20 and 24, Goldstone imaged 2016 AJ193 as it passed our planet at a distance of 2.1 million miles (about 3.4 million kilometers). Although this asteroid was farther away than 2021 PJ1, its radar echoes were stronger because 2016 AJ193 is about 40 times larger, with a diameter of about three-quarters of a mile (1.3 kilometers). The radar images revealed considerable detail on the object’s surface, including ridges, small hills, flat areas, concavities, and possible boulders.

“The 2016 AJ193 approach provided an important opportunity to study the object’s properties and improve our understanding of its future motion around the Sun,” said Shantanu Naidu, a scientist at JPL who led the Aug. 22 observations of 2016 AJ193. “It has a cometary orbit, which suggests that it may be an inactive comet. But we knew little about it before this pass, other than its size and how much sunlight its surface reflects, so we planned this observing campaign years ago.”